Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene.
نویسندگان
چکیده
The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the csgD promoter region and stimulating its transcription. The csgD gene encodes the transcription regulator CsgD, which in turn activates transcription of the csgBA operon encoding curli, extracellular structures involved in bacterial adhesion. Consistent with the role of the ompR gene as part of an osmolarity-sensing regulatory system, we also show that the formation of biofilm by E. coli is inhibited by increasing osmolarity in the growth medium. The ompR234 mutation counteracts adhesion inhibition by high medium osmolarity; we provide evidence that the ompR234 mutation promotes biofilm formation by strongly increasing the initial adhesion of bacteria to an abiotic surface. This increase in initial adhesion is stationary phase dependent, but it is negatively regulated by the stationary-phase-specific sigma factor RpoS. We propose that this negative regulation takes place via rpoS-dependent transcription of the transcription regulator cpxR; cpxR-mediated repression of csgB and csgD promoters is also triggered by osmolarity and by curli overproduction, in a feedback regulation loop.
منابع مشابه
Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation.
Escherichia coli adapts its lifestyle to the variations of environmental growth conditions, swapping between swimming motility or biofilm formation. The stationary-phase sigma factor RpoS is an important regulator of this switch, since it stimulates adhesion and represses flagellar biosynthesis. By measuring the dynamics of gene expression, we show that RpoS inhibits the transcription of the fl...
متن کاملThe curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli.
Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most Escherichia coli laboratory strains such as MG1655, due to the lack of csgD expression. The csgD gene encodes a transcription activator of the curl...
متن کاملGene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion.
Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that ...
متن کاملTargeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli
RprA is a small regulatory RNA known to weakly affect the translation of σ(S) (RpoS) in Escherichia coli. Here we demonstrate that csgD, which encodes a stationary phase-induced biofilm regulator, as well as ydaM, which encodes a diguanylate cyclase involved in activating csgD transcription, are novel negatively controlled RprA targets. As shown by extensive mutational analysis, direct binding...
متن کاملCurli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone
RydC pseudoknot aided by Hfq is a dynamic regulatory module. We report that RydC reduces expression of curli-specific gene D transcription factor required for adhesion and biofilm production in enterobacteria. During curli formation, csgD messenger RNA (mRNA) synthesis increases when endogenous levels of RydC are lacking. In Escherichia coli and Salmonella enterica, stimulation of RydC expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 183 24 شماره
صفحات -
تاریخ انتشار 2001